Pyoverdine, the Major Siderophore in Pseudomonas aeruginosa, Evades NGAL Recognition

نویسندگان

  • Mary E. Peek
  • Abhinav Bhatnagar
  • Nael A. McCarty
  • Susu M. Zughaier
چکیده

Pseudomonas aeruginosa is the most common pathogen that persists in the cystic fibrosis lungs. Bacteria such as P. aeruginosa secrete siderophores (iron-chelating molecules) and the host limits bacterial growth by producing neutrophil-gelatinase-associated lipocalin (NGAL) that specifically scavenges bacterial siderophores, therefore preventing bacteria from establishing infection. P. aeruginosa produces a major siderophore known as pyoverdine, found to be important for bacterial virulence and biofilm development. We report that pyoverdine did not bind to NGAL, as measured by tryptophan fluorescence quenching, while enterobactin bound to NGAL effectively causing a strong response. The experimental data indicate that pyoverdine evades NGAL recognition. We then employed a molecular modeling approach to simulate the binding of pyoverdine to human NGAL using NGAL's published crystal structures. The docking of pyoverdine to NGAL predicted nine different docking positions; however, neither apo- nor ferric forms of pyoverdine docked into the ligand-binding site in the calyx of NGAL where siderophores are known to bind. The molecular modeling results offer structural support that pyoverdine does not bind to NGAL, confirming the results obtained in the tryptophan quenching assay. The data suggest that pyoverdine is a stealth siderophore that evades NGAL recognition allowing P. aeruginosa to establish chronic infections in CF lungs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS.

A putative operon of four genes implicated in the synthesis of the chromophore moiety of the Pseudomonas aeruginosa siderophore pyoverdine, dubbed pvcABCD (where pvc stands for pyoverdine chromophore), was cloned and sequenced. Mutational inactivation of the pvc genes abrogated pyoverdine biosynthesis, consistent with their involvement in the biosynthesis of this siderophore. pvcABCD expression...

متن کامل

Pyoverdine-mediated regulation of FpvA synthesis in Pseudomonas aeruginosa: involvement of a probable extracytoplasmic-function sigma factor, FpvI.

A search of the pvd pyoverdine biosynthesis locus of Pseudomonas aeruginosa identified an open reading frame, PA2387, whose product exhibited a sequence similar to those of a number of so-called extracytoplasmic- function sigma factors responsible for siderophore-dependent expression of iron-siderophore receptors in Escherichia coli and Pseudomonas putida. Deletion of this gene, dubbed fpvI, co...

متن کامل

PqsA Promotes Pyoverdine Production via Biofilm Formation

Biofilms create an impermeable barrier against antimicrobial treatment and immune cell access, severely complicating treatment and clearance of nosocomial Pseudomonas aeruginosa infections. We recently reported that biofilm also contributes to pathogen virulence by regulating the production of the siderophore pyoverdine. In this study, we investigated the role of PqsA, a key cell-signaling prot...

متن کامل

Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa.

The siderophore pyoverdine (PVD) is a primary virulence factor of the human pathogenic bacterium Pseudomonas aeruginosa, acting as both an iron carrier and a virulence-related signal molecule. By exploring a number of P. aeruginosa candidate systems for PVD secretion, we identified a tripartite ATP-binding cassette efflux transporter, here named PvdRT-OpmQ, which translocates PVD from the perip...

متن کامل

Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa.

Fluorescent pseudomonads produce yellow-green siderophores when grown under conditions of iron starvation. Here, the characterization of the pvdF gene, which is required for synthesis of the siderophore pyoverdine by Pseudomonas aeruginosa strain PAO1, is described. A P. aeruginosa pvdF mutant was constructed and found to be defective for production of pyoverdine, demonstrating the involvement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012